Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Viruses ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: covidwho-1903490

ABSTRACT

Early identification of adaptive mutations could provide timely help for the control and prevention of the COVID-19 pandemic. The fast accumulation of SARS-CoV-2 sequencing data provides important support, while also raising a great challenge for the recognition of adaptive mutations. Here, we proposed a computational strategy to detect potentially adaptive mutations from their fixed and parallel patterns in the phylogenetic trajectory. We found that the biological meanings of fixed substitution and parallel mutation are highly complementary, and can reasonably be integrated as a fixed and parallel (paraFix) mutation, to identify potentially adaptive mutations. Tracking the dynamic evolution of SARS-CoV-2, 37 sites in spike protein were identified as having experienced paraFix mutations. Interestingly, 70% (26/37) of them have already been experimentally confirmed as adaptive mutations. Moreover, most of the mutations could be inferred as paraFix mutations one month earlier than when they became regionally dominant. Overall, we believe that the concept of paraFix mutations will help researchers to identify potentially adaptive mutations quickly and accurately, which will provide invaluable clues for disease control and prevention.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics
2.
Viruses ; 14(5):1087, 2022.
Article in English | MDPI | ID: covidwho-1857303

ABSTRACT

Early identification of adaptive mutations could provide timely help for the control and prevention of the COVID-19 pandemic. The fast accumulation of SARS-CoV-2 sequencing data provides important support, while also raising a great challenge for the recognition of adaptive mutations. Here, we proposed a computational strategy to detect potentially adaptive mutations from their fixed and parallel patterns in the phylogenetic trajectory. We found that the biological meanings of fixed substitution and parallel mutation are highly complementary, and can reasonably be integrated as a fixed and parallel (paraFix) mutation, to identify potentially adaptive mutations. Tracking the dynamic evolution of SARS-CoV-2, 37 sites in spike protein were identified as having experienced paraFix mutations. Interestingly, 70% (26/37) of them have already been experimentally confirmed as adaptive mutations. Moreover, most of the mutations could be inferred as paraFix mutations one month earlier than when they became regionally dominant. Overall, we believe that the concept of paraFix mutations will help researchers to identify potentially adaptive mutations quickly and accurately, which will provide invaluable clues for disease control and prevention.

3.
Biosaf Health ; 4(3): 171-178, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803615

ABSTRACT

The recently emerged Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread around the world. Although many consensus mutations of the Omicron variant have been recognized, little is known about its genetic variation during its transmission in the population. Here, we comprehensively analyzed the genetic differentiation and diversity of the Omicron variant during its early outbreak. We found that Omicron achieved more structural variations, especially deletions, on the SARS-CoV-2 genome than the other four variants of concern (Alpha, Beta, Gamma, and Delta) in the same timescale. In addition, the Omicron variant acquired, except for 50 consensus mutations, seven great new non-synonymous nucleotide substitutions during its spread. Three of them are on the S protein, including S_A701V, S_L1081V, and S_R346K, which belong to the receptor-binding domain (RBD). The Omicron BA.1 branch could be divided into five divergent groups spreading across different countries and regions based on these seven novel mutations. Furthermore, we found that the Omicron variant possesses more mutations related to a faster transmission rate than the other SARS-CoV-2 variants by assessing the relationship between the genetic diversity and transmission rate. The findings indicated that more attention should be paid to the significant genetic differentiation and diversity of the Omicron variant for better disease prevention and control.

4.
Microbiol Spectr ; 10(2): e0219121, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1731263

ABSTRACT

SARS-CoV-2 continues adapting to human hosts during the current worldwide pandemic since 2019. This virus evolves through multiple means, such as single nucleotide mutations and structural variations, which has brought great difficulty to disease prevention and control of COVID-19. Structural variation, including multiple nucleotide changes like insertions and deletions, has a greater impact relative to single nucleotide mutation on both genome structures and protein functions. In this study, we found that deletion occurred frequently in not only SARS-CoV-2 but also in other SARS-related coronaviruses. These deletions showed obvious location bias and formed 45 recurrent deletion regions in the viral genome. Some of these deletions showed proliferation advantages, including four high-frequency deletions (nsp6 Δ106-109, S Δ69-70, S Δ144, and Δ28271) that were detected in around 50% of SARS-CoV-2 genomes and other 19 median-frequency deletions. In addition, the association between deletions and the WHO reported variants of concern (VOC) and variants of interest (VOI) of SARS-CoV-2 indicated that these variants had a unique combination of deletion patterns. In the spike (S) protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain. Some deletions, such as S Δ144/145 and S Δ243-244, have been confirmed to block the binding sites of neutralizing antibodies. Overall, this study revealed a conservative regional pattern and the potential effect of some deletions in SARS-CoV-2 over the whole genome, providing important evidence for potential epidemic control and vaccine development. IMPORTANCE Mutations in SARS-CoV-2 were studied extensively, while only the structure variations on the spike protein were discussed well in previous studies. To study the role of structural variations in virus evolution, we described the distribution of structure variations on the whole genome. Conserved patterns were found of deletions among SARS-CoV-2, SARS-CoV-2-like, and SARS-CoV-like viruses. There were 45 recurrent deletion regions (RDRs) in SARS-CoV-2 generated through the integration of deleted positions. In these regions, four high-frequency deletions parallelly appeared in multiple strains. Furthermore, in the spike protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain, blocking the binding sites of some neutralizing antibodies, while the structural variations in SARS-related coronavirus were mainly in the N-terminal domain and receptor binding domain. The receptor binding domain is highly related to hosting recognition. The deletions in the receptor binding domain may play a role in host adaption.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/epidemiology , Humans , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL